Pandit Deendayal Energy University

B. Tech. Petrochemical Engineering/DPE/SoET

	22P	CM312	2P		Reaction Engineering Laboratory						
	Teaching Scheme					Examination Scheme					
					Theory			Practical		Total	
L	Т	Р	С	Hr/Week	MS	ES	IA	LW	LE/Viva	Marks	
0	0	2	1	2	-	-	-	50	50	100	

COURSE OBJECTIVES

Students develop sound working knowledge and design different types of reactors.

Week 1: Kinetic studies in a Batch reactor

Week 2: Kinetic studies in a Plug flow reactor

Week 3: Kinetic studies in a CSTR

Week 4: Kinetic studies in a Packed bed reactor

Week 5: Kinetic studies in a PFR followed by a CSTR

Week 6: RTD studies in a PFR

Week 7: RTD studies in a packed bed reactor

Week 8: RTD studies in a CSTR

Week 9: Studies on micellar catalysis

Week 10: Study of temperature dependence of rate constant using CSTR.

Week 11: Kinetic studies in Sono chemical reactor

Week 12: Batch reactive distillation Drying characteristics of Vacuum/Tray/Rotary dryer.

Week 13: Kinetics of photochemical reaction

Week 14: Demonstration of heterogeneous catalytic reaction

Week 15: Demonstration of gas-liquid reaction

COURSE OUTCOMES

On completion of the course, student will be able to

CO1: Understand the kinetics of Batch, PFR and CSTR.

CO2: Understand the working principle of Packed and CSTR.

CO3: Gain sound knowledge on sono chemical reactor.

CO4: Demonstrate the drying operations and photo chemical reaction.

CO5: Describe catalysis and catalytic reactions.

CO6: Demonstrate gas liquid reactions.

END-SEMESTER EXAMINATION QUESTION PAPER PATTERN

Exam Duration: 3 Hr

Max. Marks: 100 PART A: Evaluation based on the class performance and Laboratory book 50 Marks PART B: Viva Examination based conducted experiments 50 Marks